Low-Rank Positive Approximants of Symmetric Matrices
نویسندگان
چکیده
منابع مشابه
A Sparse Decomposition of Low Rank Symmetric Positive Semidefinite Matrices
Suppose that A ∈ RN×N is symmetric positive semidefinite with rank K ≤ N . Our goal is to decompose A into K rank-one matrices ∑K k=1 gkg T k where the modes {gk} K k=1 are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where A is the covariance function and is ...
متن کاملLow-Rank Optimization on the Cone of Positive Semidefinite Matrices
We propose an algorithm for solving optimization problems defined on a subset of the cone of symmetric positive semidefinite matrices. This algorithm relies on the factorization X = Y Y T , where the number of columns of Y fixes an upper bound on the rank of the positive semidefinite matrix X. It is thus very effective for solving problems that have a low-rank solution. The factorization X = Y ...
متن کاملAccurate Symmetric Rank Revealing and Eigendecompositions of Symmetric Structured Matrices
We present new O(n3) algorithms that compute eigenvalues and eigenvectors to high relative accuracy in floating point arithmetic for the following types of matrices: symmetric Cauchy, symmetric diagonally scaled Cauchy, symmetric Vandermonde, and symmetric totally nonnegative matrices when they are given as products of nonnegative bidiagonal factors. The algorithms are divided into two stages: ...
متن کاملRobust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices
Given a symmetric positive definite matrix A, we compute a structured approximate Cholesky factorization A ≈ RTR up to any desired accuracy, where R is an upper triangular hierarchically semiseparable (HSS) matrix. The factorization is stable, robust, and efficient. The method compresses off-diagonal blocks with rank-revealing orthogonal decompositions. In the meantime, positive semidefinite te...
متن کاملMatrices with High Completely Positive Semidefinite Rank
A real symmetric matrix M is completely positive semidefinite if it admits a Gram representation by positive semidefinite matrices (of any size d). The smallest such d is called the completely positive semidefinite rank of M , and it is an open question whether there exists an upper bound on this number as a function of the matrix size. We show that if such an upper bound exists, it has to be a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Linear Algebra & Matrix Theory
سال: 2014
ISSN: 2165-333X,2165-3348
DOI: 10.4236/alamt.2014.43015